
Transport and Communications, 2020; Vol. I. DOI: 10.26552/tac.C.2020.1.4
ISSN: 1339-5130 17

The Use of Monte Carlo Simulation Method in Decision
Support Via MATLAB Script

Viliam Mojský1, Karol Achimský1

1Department of communications, Faculty of Operations and Economics of Transport and Communications, University of Žilina,
Univerzitná 1, 010 26 Žilina, Slovakia

Abstract In our research we examined the possibility of using Monte Carlo simulation to support decision making
through simulation models. For this purpose, we chose a basic economy task assignment. Subsequently, we created a simu-
lation algorithm in Matlab, where we searched for the optimal amount of offered products based on the task inputs. The
output of the research is a simulation algorithm using the Monte Carlo method to solve a given economic problem.

Keywords simulation methods, Monte Carlo, Matlab, decision support

JEL C63

1. Introduction

Simulation allows us to simulate the behaviour of the real
system via a created model. Using this model, it is possible
to simulate various events that may occur. Based on the
simulation results, it is possible to estimate with some
probability the development of the real situation. Simulation
and simulation models are powerful tools that can help us
with decision making, with the right inputs. The correctness
of these models is influenced by the correct determination
of the relationships, functions and probabilities of events to
be simulated.

In the research we dealt with the Monte Carlo simulation
method. We applied this method to an example from the
field of economics in which the method was used as a tool
to support decision making between several eventualities.
We used Matlab to create the simulation model.

2. Materials and Methods

The chapter briefly describes the theoretical background
and the program we used to create the simulation.

2.1. Simulation, model, Monte Carlo

Simulation is the process of creating a model of a real
system and conducting experiments with it to achieve a
better understanding of the behaviour of the system studied,
or to assess various variants of system. A system is a set of
elements that are organized in a certain way. A real system
is a part of the real world that is of interest. We can refer to
the model as a guide or a system that provides, to some ex-
tent, the same behaviour as a real system [1,2].

The term model is used to refer to both material and im-
material imitation of an object, regardless of the purpose for
which it is used. The imitation itself can be implemented
with practical tasks, it can fulfil certain functions, or it can
be used for research purposes [3,4].

The Monte Carlo method is called a numerical method of
solving mathematical problems by modelling random vari-
ables and statistical estimation of their characteristics. The
Monte Carlo method can be used to solve any mathematical
problems, both stochastic and deterministic [5].

The Monte Carlo method is a numerical method based on
the relationship between the probability characteristics of
various random processes and the quantities that are the
solution of the studied problems [6].

2.1. Matlab

Matlab is a programming platform for research and sci-
entific purposes. It is based on Matlab's own programming
language. It is a matrix-based language that allows to natu-
rally express mathematical calculations. Matlab combines a
working environment for iterative analysis and process de-
sign with a programming language that directly expresses
matrices and mathematical fields. It is possible to analyse
data, create algorithms and create models and applications
using Matlab [7].

Matlab has several working environments. We have cho-
sen Live Script. It is a new work environment that combines
Matlab code with formatted text and image output in the
Live Editor environment [8].

18 Viliam Mojský (et al.): The Use of Monte Carlo Simulation Method in Decision Support Via Matlab Script

3. Results

At the beginning of the chapter is given an economic
problem, for which we created a simulation model by Mon-
te Carlo method in Matlab. After the task assignment, the
flowchart and the individual parts of the simulation model
are presented.

3.1. Task assignment

The post office manager is facing an uneasy task in the
pre-Christmas period. Before Christmas, postcards with the
wishes of "Merry Christmas and a Happy New Year" are
sold well as ancillary goods. One postcard is purchased by
the postal manager for 0.70 Eur and sold for 1.20 Eur.
Postcards that are not sold by the end of the New Year pe-
riod are then sold at a 50% discount. The difficult task of
the postal manager is to decide how many postcards to or-
der in order to maximize the profit from postcard sales. If
the demand for postcards is higher than the quantity ordered,
the post office will lose profits due to lack of postcards.
Conversely, if the demand for postcards is lower than the
quantity ordered, the post office will lose some of the prof-
its due to the Christmas discount sale.

The profit equation if demand is greater than supply is:
z = (1,20 – 0,70) * q
If demand is smaller than supply, then the profit equation

is:
z = 1,20 * d – 0,70 * q + 0,60 * (q – d)
The simulation model inputs are:

 Ordered quantity q (decision variable),
 Different income levels and expenditure factors (con-

stants)
 Demand d (probability variable)

If demand is known, we can calculate the profit from the
equations above. Because demand is probabilistic variable,
we must choose the value of the demand from probability
distribution of demand. We have defined the decision prob-
lem by assuming a level of demand from the range of
400-900, from which we will randomly select numbers us-
ing the randi function. This selects pseudo-random numbers
from the given range according to an even distribution.

3.2. Flowchart

We have created a development diagram according to the
given task assignment. The flowchart is shown in Figure 1.

Figure 1. Algorithm flowchart

3.3. Simulation model in Matlab

Based on the flowchart, we started writing the algorithm
code in Matlab. We created the code in Live Script. This
allowed us to use some additional features, such as display-
ing outputs without opening additional program windows.
Another advantage is that we can run the program on any
computer through the Matlab cloud environment without
the need to install Matlab.

The created program was divided into three logical parts.
We decided for the three parts because they logically di-
vided the program into inputs, algorithm operations and
outputs. These parts are described separately in their own
chapters. Parts of the source code used are listed in each
chapter.

3.3.1. Initialization part

In initialization part are defined input variables, which
are used in the program.

Source code:
clear;
tic;

Transport and Communications, 2020; Vol. I. DOI: 10.26552/tac.C.2020.1.4
ISSN: 1339-5130 19

N = 50000;
Dmin = 400;
Dmax = 900;
Qmin = 300;
Qmax = 1400;

ArrDim=(Qmax‐Qmin)/100+1;
d = zeros(N,ArrDim);
z = zeros(N,ArrDim);
q(:,1) = Qmin:100:Qmax;
c = 0;
rng(47);
The clear function flushes the cache and all values from

previous instances of this or another Matlab script. This
ensures that past results do not affect the current instance.
In addition to biasing the results, without flushing the cache,
bugs could also be generated as a result of using variables
from previous scripts. The clear function is followed by the
tic function. This is a paired function, the pair to which is
the toc function, located at the end of the source code. The
tic toc function is used to measure the time required to exe-
cute a program. The measured time is displayed in the out-
put window along with the other outputs. The function can
be used multiple times in the program to determine which
part of the program is the most time consuming and needs
optimization. The function was mainly used during devel-
opment. In the final version, it is used to compare how
changing the size of input values affects the length of pro-
gram execution.

Input variables follow. N denotes the number of repeats,
i.e. the number of generated pseudo-random numbers that
will be used in one iteration of the cycle. The value is set to
50,000, which we consider sufficient. Dmin and Dmax,
which represent the minimum and maximum predicted dose,
were also determined. They are used in the program as the
lower and upper bounds of the range from which pseu-
do-random numbers are generated. Qmin and Qmax were
set after them to set the minimum and maximum quantities
offered. These are used in the first cycle as the minimum
demand, to which 100 is added at each iteration until the
maximum demand is reached.

After defining the input variables, the initialization sec-
tion also contains commands for pre-allocation of variables.
This is done to speed up the implementation of the program.
In the program, fields are filled at each cycle iteration.
Matlab can work faster with a field if it does not have to
extend it each time it is filled, but simply overwrites the
value at given field position. The number of columns in the
array is initially determined. This value is stored in the
ArrDim variable and is calculated by subtracting the maxi-
mum and minimum demand, dividing the result by 100 and
adding 1 to it. Adding 1 is required because Matlab does not
work with arrays like other programming languages. The
initial value in the two-dimensional array has a coordinate
of 1.1, unlike other programming languages, where the first
coordinate value is 0.0. The result of this calculation is used

for three successive populations of the variables d and z.
Both are defined as two-dimensional arrays with dimen-
sions N (number of rows) and ArrDim (number of columns).
Generated predicted query is stored in variable d. The vari-
able z stores the calculated profit based on the expected
demand. Both variables are filled with zeros that are over-
written when the program executes. Each level of the or-
dered quantity has its own column in which the measured
values are stored. Another variable defined is q. This is
filled with levels of offered quantity from minimum to
maximum, increasing by 100. Since we know that variable
q will be a 1-dimensional vector, we have defined it as a
column array with (:, 1) statement, instead of the default
row array. We did this because of faster access to its values,
because Matlab can work faster with column variables. This
is an optimization approach in declaring variables. Next, the
variable c has been defined to be zero. This variable pro-
vides the addressing of the correct column in the "d" and
"z" fields used in the program. The last command is the rng
function. This provides a seed for pseudo-random numbers,
so that every time the simulation is repeated, we always get
the same result. It is set to 47, a nonnegative integer that
generates predictable pseudo-random numbers. If we al-
ways want a different result, we can set the value ‘shuffle‘.

3.3.2. Generating pseudo-random numbers

The next part of the program lists the cycles that ensure
that a specified number of pseudo-random numbers will be
generated. In the cycles there are also formulas from the
example, which are placed in a decision statement, which,
based on the input parameters, decides which of the formu-
las is used.

Source code:
for j=Qmin:100:Qmax
 c=c+1;

 parfor i=1:N
 d(i,c)=randi([Dmin Dmax]);
 if d(i,c)>j
 z(i,c)=(1.2‐0.7)*j;
 else

z(i,c)=1.2*d(i,c)‐0.7*j+0.6*(j‐d
(i,c));

 end
 end

end
At the beginning of the code is a for loop. This ensures

that the cycle runs in a predetermined number of iterations.
In this case, it ensures the execution of orders inside, for
each level of ordered quantity separately. It starts with the
minimum order quantity and increases in 100-increments up
to the maximum order quantity. This is followed by a
command that increases the value of c. This ensures that
each level of ordered quantity will have its own column
index. This is followed by the parfor command. This is a

20 Viliam Mojský (et al.): The Use of Monte Carlo Simulation Method in Decision Support Via Matlab Script

parallel for command. Parallelization means that the com-
mand can be executed in parallel, or simultaneously, with
other commands. This is a very useful method that can sig-
nificantly speed up program execution. By default, the pro-
gram is run on a single thread. Multiple processor threads
can be utilized through parallelization. This means that on
multi-core and multi-threaded processors, the program will
run significantly faster. However, we need to be very care-
ful about what processes we parallelize, because improper
use can cause errors in the program, which may not occur
immediately during testing. The parfor cycle runs N times
for i from 1 to N. In our case, N is 50,000, so the cycle runs
50,000 times. It is important that the variables that have
been produced in the parfor are indexed. This prevents er-
rors such as overwriting variables. For example, a pseu-
do-random number d (i, c) could cause a serious program
error without an index. This is because every new iteration
of the cycle generates a new pseudo-random number. If the
program runs on 4 threads, the number d would be generat-
ed 4 times. Since generating is the first operation within a
cycle, the last generated number d would be stored in varia-
ble d. This number would continue to be used in the cycle
and could be changed again while running because the
threads are working at the same time. In this case, the re-
sults would be significantly distorted and rendered irrele-
vant. Therefore, the variable d is indexed, ensuring that
each iteration of the cycle has its own number d, to which it
assigns its own pseudo-random number with which the cy-
cle works and no further iteration can change it. It is im-
portant that the index changes with the cycle iteration. If it
were changed by calculation, it could lead to errors again.
In this case, the index changes according to the variable i,
which is defined in the parameters of the parfor cycle,
which ensures its security. The body of the cycle also con-
tains the variable j, which does not have an index. However,
this is fine, this variable is invariant for all iterations of the
parfor cycle. Its value is determined by the parent for loop.
In the parfor cycle, it is used only in calculations, which is
logically correct. The variable c is similar. The last variable
in the parforum cycle is the variable z (i, c), which again
changes its value at each iteration. Its calculation depends
on the result of the decision order. This variable is also in-
dexed to avoid errors in the program.

Within the parfor cycle, pseudo-random numbers are
generated and evaluated. The profit is then calculated. The
first command generates a pseudo-random number via the
randi function. This generates numbers from the range giv-
en by the minimum and maximum predicted demand, ac-
cording to the even distribution. The generated number is
stored in the variable d (i, c). Subsequently, the number
generated is equal to the level of the ordered quantity j via
the if statement. If the result of the comparison is true, the
generated number is greater than the quantity ordered, i. the
demand is larger than the offer, then the if statement is ex-
ecuted. If the result of the comparison is not true, so the
offer is greater than the demand, then is executed the else

branch. Both formulas in the if statement are taken from the
assignment. Their task is to calculate the profit based on the
result of the comparison of demand with offer. The calcu-
lated gain is stored in the variable z (i, c). The profit calcu-
lation is followed by the end of the if decision statement
and both cycles are followed by end keywords.

3.3.3. Algorithm outputs

Outputs from the model are divided into two parts,
namely text part and graphic part. Text outputs generates
sentences indicating maximum and minimum values.
Graphical outputs contain several variants of possible
Matlab outputs.

Text outputs
Source code:

meanz(:,1)=round(mean(z),2);
[maxZ,maxQ] = max(meanz);
[minZ,minQ] = min(meanz);

odpoved1 = ['Najväčší zisk bude pravdepodobne
dosiahnutý pri ponúkanom množstve
',num2str(q(maxQ)), 'ks vo výške '
,num2str(maxZ),'€.'];
disp(odpoved1);
odpoved2 = ['Najmenší zisk bude pravdepodobne
dosiahnutý pri ponúkanom množstve
',num2str(q(minQ)), 'ks vo výške '
,num2str(minZ),'€.'];
disp(odpoved2);

At the beginning of the code is defined the meanz varia-
ble, which is a one-dimensional array. Again, to optimize
performance, it is defined as a column vector by the (:, 1)
statement. This variable stores the calculated average value
for each column from the profit field of (i, j). The results are
rounded to two decimal places. In the next two commands,
its maximum and minimum (maxZ and minZ) as well as
their position in the array (maxQ and minQ) are determined
from the meanz field. Writing the generated variables in
square brackets is necessary because the value and position
of the search value in the array is determined.

In the answer1 statement, a text response is formulated
by string interpolation. The variables had to be modified
before being inserted into the sentence. These are numbers,
so they are of type number and must be converted to a
string with the num2str function to be inserted into a sen-
tence. The first number is read from the field q (i), where
"i" is replaced by the detected maxQ variable, which repre-
sents the position of the maximum quantity. The second
number is the maxZ variable, which is also converted to a
string. The disp function is used after the generated re-
sponses to display the generated sentences. For minimum
values, the same procedure was used, but with different
values. The resulting outputs are shown in Figure 2.

Graphic outputs
Source code:
xaxmin = Qmin‐Qmin*0.2;

Transport and Communications, 2020; Vol. I. DOI: 10.26552/tac.C.2020.1.4
ISSN: 1339-5130 21

xaxmax = Qmax+Qmax*0.05;
yaxmin = minZ‐minZ*0.2;
yaxmax = maxZ+maxZ*0.1;

plot(q,meanz,'‐s','MarkerSize',5,'MarkerEdg
eColor','red','MarkerFaceColor',[1 .6 .6]);
hold off;
axis([xaxmin xaxmax yaxmin yaxmax]);
ylabel('Priemerný zisk');
xlabel('Q');
plot(q,meanz,'‐s','MarkerSize',5,'MarkerEdg
eColor','red','MarkerFaceColor',[1 .6 .6]);
hold off;
axis([xaxmin xaxmax yaxmin yaxmax]);
text(q,meanz,num2str(meanz'),'vert','bottom
','horiz','center');
ylabel('Priemerný zisk');
xlabel('Q');
plot(q,meanz,'color','#0072BD');
hold on;
stem(q,meanz,'.','color','#0072BD');
axis([xaxmin xaxmax yaxmin yaxmax]);
text(q,meanz,num2str(meanz'),'vert','bottom
','horiz','center');
hold off;
ylabel('Priemerný zisk');
xlabel('Q');
bar(q,meanz);
text(q,meanz,num2str(meanz'),'vert','bottom
','horiz','center');
box off;
ylabel('Priemerný zisk');
xlabel('Q');

toc;

Four graphs were created within the graphical outputs to
illustrate the possibilities of graphical outputs from the
Matlab program.

There are 4 variable declarations at the beginning of the
code. These were created to modify the boundaries of the x
and y axes in the graphs. This step is not necessary, the
program would draw graphs without it. By default, however,
the graphs starts at 0.0, the maximum of the y-axis is the
maximum value of y and the maximum of x is the maxi-
mum of x, so the points are drawn at the graph boundaries,
which is disturbing, especially if we want to add a descrip-
tion or highlight them. Therefore, we have declared 4 points
that determine the minimum and maximum on the x and y
axes. Their name is an abbreviation of their purpose, e.g.
xaxmin is the x axis minimum, or the minimum on the x
axis. Their values are calculated based on a given value, e.g.
the maximum on the x-axis, plus 5% of its length. The oth-
ers are calculated similarly, but with other coefficients,
which we determined by observing the graph.

Declaring the borders is followed by the creation of the
first graph. The command to create a line chart is plot. This

is a very simple command in which only the first two pa-
rameters, x and y values, are required. Other parameters are
set by default. So, at the beginning we have x and y axes.
We set the first parameter of the x-axis to the variable q and
the second parameter of the y-axis draws data from the
meanz variable. Subsequently, the ‘-s‘ statement defines the
line type and point markings on the graph. The line will be
solid ‘-‘ and the points on the graph will be marked with a
square ‘s‘ (square). Next we defined other parameters of the
graph. There are no rules of order when defining them.
Thus, any parameter can be defined anywhere within the
bracket of the plot command. Therefore, it is always neces-
sary to first define the parameter that can be set by its name.
The parameter name is followed by the parameter value.
The first parameter that was defined was the size of the
point mark on the graph using the ‘MarkerSize‘ keyword.
We set the value to 5 units. 1 unit = 1/72 inch. Next, we set
the border color of the point marker to red using the ‘Mark-
erEdgeCo-lor keyword and the‘ red ‘value. The color was
set directly by its name, which is defined in Matlab. Next,
we set the color of the interior of the point on the graph to a
faint red shade with the keyword ‘MarkerFaceCo-lor‘ and
the value [1 .6 .6]. It is an abbreviated color definition nota-
tion according to the RGB scheme [1 0.6 0.6]. We deliber-
ately used two different kinds of color definition to show
that it is possible to use multiple kinds of definitions. The
plot command is followed by a hold command with the off
parameter. The hold command determines whether the next
chart is rendered, whether to the current chart or to a new
chart window. Off means no, so the graph will not be held,
and the new graph will be plotted in the new window. These
two commands alone are enough to generate graphs. We
added to them the modification of the x and y axes borders
and their names. The axis command sets the boundaries of
the x and y axes. We used the values calculated at the be-
ginning of the section. The following are the ylabel and
xlabel commands that add names to the x and y axes. The
first graph output is shown in Figure 2.

Figure 2. The first graph output.

We defined the second graph as the first, with one dif-
ference. We have added names to the chart using the text

22 Viliam Mojský (et al.): The Use of Monte Carlo Simulation Method in Decision Support Via Matlab Script

function to add descriptions to the chart at the specified
points. Similar to plotting a graph, the x and y axes need to
be specified in this function to know where to place text
markers. We used the variables q and meanz on the x and y
axes. Another parameter in the function is the text of the
axis description. Here we entered meanz values. However,
we had to convert them to a string because number values
cannot be output. The num2str function was used for this. In
addition, inside the function, the upper quotation mark ‘was
used to separate meanz values. Without the quotation mark,
the entire meanz field would be displayed at each point. The
quotation mark ensures that it displays only the corre-
sponding value, the others are cut off. That would be all the
mandatory parameters, but we also set the vertical and hor-
izontal alignment. Vertical alignment with the ‘vert‘ key-
word to ‘bot-tom’ or down. Horizontal alignment with the
‘horiz‘ keyword to ‘center‘. The other parameters of the
graph are the same as the first. The output of the second
graph is shown in Figure 3.

Figure 3. The second graph output.

The third statement again extends the previous statement.
First, it contains two hold functions. The first is set to on,
the second is set to off. This is because between them there
is a plot of the second type of graph - the vertical line graph,
that plots into the body of the previous graph. The first hold
on function allows us to draw a second graph into the first
body. The stem function was used to draw a line graph. Its
input parameters are the same as the plot function, except
for the output display. Instead of a line graph where the line
connects the points formed by the coordinates, it plots ver-
tical lines from the x-axis to the height determined by the
y-axis. In the function parameters, we set the line type to
dashed by the ‘-‘ statement. We have turned off the point
marking with the ‘Marker‘ parameter, which we set to
‘none‘, i.e. no marking. The colour of the chart was set by
the ‘color’ parameter, which we assigned a value in the
form of the hexadecimal colour code‘ # b3d9ff ‘. We chose
this method to illustrate, along with the previous examples,
the possibilities of defining colours and to show that there
are several right paths to the result. Again, the graph func-

tion is followed by definitions of boundaries, text, and de-
scription of the graph, and a hold function with the parame-
ter off to prevent another graph from being drawn into the
body. Boundaries, texts and graph descriptions are suffi-
cient if two graphs are drawn into one output only once, it is
not necessary to do it for each. The output of the third graph
is shown in Figure 4.

Figure 4. The third graph output.

The last, fourth graph is of the column type. To create it,
use the bar function, which again accepts the same parame-
ters as the previous chart types. In this case, we decided to
define only the x and y axes with the variables q and menaz.
We left the other parameters as default. The following are
statements to display descriptions above the graph columns,
naming the x and y axes. These commands are the same as
in the previous graphs. In addition, there is a function box
with parameter off. The default is on, so on. The box creates
a bounding line around the graph with a scale from all sides.
Since the x and y axes have their own scaling and have a
value above each column, we decided to turn this feature
off. The output is shown in Figure 5.

Figure 5. The fourth graph output.

Behind the graph creation code is the toc function de-
scribed above to record the execution time of the program.
This is the end of the algorithm's source code.

Transport and Communications, 2020; Vol. I. DOI: 10.26552/tac.C.2020.1.4
ISSN: 1339-5130 23

In addition to the listed outputs, a Workspace is also
available. Workspace is a space where all variables created
during the program are stored. They are available after the
execution is complete, or during the execution (unless clear
statement is used). All variables can be exported as a table
in multiple formats, e.g. .txt, or .xls through the writetable ()
function. This data can be used for further analysis and to
generate additional outputs. The workspace created in our
program is shown in Figure 6. It contains an overview of all
the variables that have occurred. Variables labelled as a
multiplication of two numbers are vectors indicating their
dimensions.

Figure 6. Workspace with variables.

3.4. Simulation results

Through the created simulation model, we can proceed to
the solution of the given example. Inputs and input formulas
are shown in the described simulation model. We decided to
draw the conclusions from the last type of bar graph shown
in Figure 5, because it seems to us most readable.

In the simulation, the examined quantity of goods was
added. We set it from 300 to 1400 pieces of postcards. We
decided for a minimum of 300 because the minimum de-
mand is 400 and we wanted to point out the difference in
profit. In the case of 300pcs and 400pcs, there could never
have been a discount sale and the products were sold at full
margin. Therefore, the difference in profit between the two
options is the largest of the two options. Full purchasing
power has always been used. At 500 pieces, a slight de-
crease in the rate of profit growth is evident. For other sup-
ply volumes, the rate of increase in profit gradually de-

creases. The maximum is reached at the level of 800 post-
cards. This amount achieved an average estimated profit of
EUR 303.77. Beyond the supply level of 800, the average
profit started to decline. The graph in Figure 5 shows that
the rate of descent is less than the rate of climb to the max-
imum.

By extending the ordered quantity to 2400 pieces and
leaving the same amount of attempts to generate pseu-
do-random numbers 50,000 and other parameters, we get
the graph shown in Figure 7.

Figure 7. Extended graph

From the graph it can be concluded that values from
300Q to 800Q have a distribution similar to the square root
function, while values from 800Q to 2400Q are more like a
linear function distribution.

Conclusion

By this research we wanted to show the possibility of us-
ing Monte Carlo method to support managerial decision
making through simulation model. We created a model that
was applied to a simple economic example from the postal
environment. The model itself was created in Matlab to
show the possibilities of this program. Through the model,
the demand of customers was simulated and the optimal
amount of products offered was found, with which accord-
ing to the established formulas the greatest profit will be
achieved. Based on the results of the simulation, we found
that the biggest profit will be achieved by the company with
the offered quantity Q = 800 products in the amount of
EUR 303.77.

The created model provides the user with various types
of outputs in both text and graphical form. The user also has
stored variables to work with and analyse in order to obtain
additional outputs. The advantage of the model is its modu-
larity. In the algorithm we used a uniform distribution to
generate pseudo-random numbers. This distribution can be
replaced by another distribution by modifying a command

24 Viliam Mojský (et al.): The Use of Monte Carlo Simulation Method in Decision Support Via Matlab Script

in a program that provides the generation of elements into
the variable d (i, c).

ACKNOWLEDGEMENTS
This article was published with the support of project

EUREKA-E! 11158 U Health Auto-ID technológie
a internet vecí na zvýšenie kvality zdravotníckych služieb.

This article was published with the support of project
VEGA 1/0721/18 Výskum ekonomických dopadov vi-
zuálneho smogu v doprave s využitím metód neurovedy.

REFERENCES
[1] R. Hušek, J. Lauber. Simulačné modely. Praha: SNTL/ALFA,

1987. 349s. ISBN 978-80-562-0075-9

[2] Achimský, K., Čorejová, T., Fitzová, M. Kajánek, B. Pro-
jektovanie sietí v pošte I. Vysoká škola dopravy a spojov
v Žiline. Edičné stredisko VŠDS, Žilina. 1995. 147s. ISBN
80-7100-238-0

[3] Všeobecné základy modelovania. [online]. [citivané
25.05.2019]. Dostupné na internete:
http://www.fbi.uniza.sk/ktvi/leitner/2_predmety/OA/00_Vse
obecne%20o%20modelovani.pdf

[4] Achimský, K. Simulácia s použitím jazyka GSAP II. In:
R-687-010 ˇUVT VŠDS. Žilina. 1982. 38s.

[5] Achimská. V. Modelovanie systémov. Žilina: Žilinská uni-
verzita v Žiline, 2011. 96 s. ISBN 978-80-554-0450-9

[6] Úvod do modelovania a simulácie, metóda Monte Carlo.
[online]. [citované 25.05.2019]. Dostupné na internete:
http://fbi.uniza.sk/ktvi/leitner/2_
predmety/SMOA/04_StatistikaExcel/MCprednaska.pdf

[7] What is Matlab? [online]. [citované 26.05.2019]. Dostupné na
internete:
https://nl.mathworks.com/discovery/what-is-Matlab.html

[8] What Is a Live Script or Function? [online]. [citované
26.05.2019[. Dostupné na internete:
https://nl.mathworks.com/help/Matlab/Matlab_prog/what-is-
a-live-script-or-function.html

