
Transport and Communications, 2025; Vol. II.  DOI: 10.26552/tac.C.2025.2.1 

ISSN: 2730-0854 1 

 

Synthetic Data for Resilient Urban Traffic Systems:  

A Methodological Framework 

Maroš Jakubec1, Radovan Madleňák2, Michal Palčák1, Pavol Kudela1, Eva Jakubcová1, Daniel 

Gachulinec2, Viktória Cvacho2 

1University Science Park UNIZA, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 
2 Faculty of Operations and Economics of Transport and Communications, University of Žilina, Univerzitná 8215/1, 010 26 Žilina,  

Slovakia 

 

Abstract  Urban traffic models often struggle with rare and disruptive events because real-world data for such situations 

are limited. This article presents the SynTraffic project, which explores the use of synthetic traffic data to support more robust 

and resilient traffic modelling. The proposed approach combines real-world observations with artificially created traffic sce-

narios to expand the range of conditions available for model development. The methodology is demonstrated using the city 

of Žilina as a representative urban case with complex traffic patterns and long-term monitoring infrastructure. The article 

focuses on the theoretical background, methodological design, and expected benefits of synthetic data in intelligent transpor-

tation systems, highlighting its potential to address data scarcity, support privacy-aware analysis, and improve the handling 

of unusual traffic conditions. 
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1. Introduction 

Urban mobility systems face persistent challenges arising 

from traffic congestion, inefficiencies, and operational dis-

ruptions. In the European Union, urban traffic jams are esti-

mated to cost €110 billion annually, reflecting substantial 

losses in productivity and environmental quality [1]. Cities 

like Žilina (a mid-sized transport hub in Slovakia) grapple 

with these pressures as travel demand continues to grow 

while infrastructure capacity remains limited.  
 

Figure 1.  The Žilina traffic volume during extreme traffic conditions. 

As illustrated in Fig. 1, extreme traffic conditions in Žilina 

can escalate rapidly, revealing how sensitive the network is 

to adverse or unexpected situations. Traditional traffic 

management strategies (fixed-timed signals, static models) 

often struggle to perform under such dynamic or extreme cir-

cumstances, including accidents or severe weather events. 

These limitations highlight the need for more adaptive, re-

sponsive, and data-informed approaches. 

These challenges explain why modern traffic systems in-

creasingly rely on flexible and predictive decision-support 

tools capable of handling unexpected disruptions. The field 

has seen a marked rise in the adoption of Intelligent Trans-

portation Systems (ITS) supported by Artificial Intelligence 

(AI). Deep learning techniques are now widely explored for 

traffic prediction, adaptive control, and incident detection [2]. 

Recent research has shown that AI models, particularly those 

using generative techniques, can maintain strong perfor-

mance even under adverse or unusual conditions. For in-

stance, Liu et al. [3] proposed a two-stage deep model that 

delivers robust scene segmentation in heavy fog and snow, 

while Lee et al. [4] demonstrated that a Generative Adversar-

ial Network can translate LIDAR data from clear weather 

into rainy or foggy conditions, , thereby improving model 

generalization and enhancing perception in adverse environ-

ments. Such findings underscore the potential of AI to en-

hance traffic safety and operational efficiency. 

A fundamental limitation of these methods is the need for 

large, diverse, and representative training datasets. Real traf-

fic data often captures only standard conditions, making it 

difficult to model rare but high-impact situations, such as a 

sudden citywide jam during a blizzard. Collecting such data 



 

2 Maroš Jakubec (et al.): Synthetic Data for Resilient Urban Traffic Systems: A Methodological Framework 

is not only costly but also constrained by privacy and legal 

regulations. Camera-based and connected-vehicle data may 

include personal identifiers, restricting how they can be 

shared or processed under frameworks like GDPR [5]. These 

constraints create a data bottleneck, where the scenarios most 

relevant for improving system resilience are precisely the 

ones with the least available data. 

Synthetic traffic data provides a practical solution to this 

challenge. It consists of artificially generated datasets that re-

tain key statistical patterns of real traffic without exposing 

personal information. Modern generative models make it 

possible to create realistic artificial samples that supplement 

real-world training data [6]. This approach helps fill gaps re-

lated to rare events, increases overall data volume, and inher-

ently supports privacy protection. Forecasts from the Euro-

pean Data Protection Supervisor suggest that synthetic data 

may become the dominant source for AI model training by 

2030 [7]. In ITS, synthetic data allows traffic models to learn 

from accidents, extreme weather, or infrastructure failures 

without needing these events to happen in real life. 

The Synthetic Traffic Data for Mobility and Resilience 

(SynTraffic) project builds directly on this shift toward syn-

thetic data in AI-based mobility research. Developed at the 

University of Žilina, the project aims to integrate generative 

AI and simulation techniques to improve the modelling of 

urban traffic dynamics. Its methodology is based on combin-

ing real and synthetic datasets so that AI-based prediction 

and control models can learn to operate effectively under 

both routine and atypical conditions that may arise in a city 

such as Žilina. The objective is to support the development 

of traffic management strategies that remain robust, main-

taining flow and safety even when the system is exposed to 

unexpected disturbances. From a theoretical perspective, 

SynTraffic operates at the intersection of transportation en-

gineering, machine learning, and data science. 

The following sections present the theoretical foundations 

of the SynTraffic methodology and the context in which it is 

applied. They outline the key concepts that guide the project, 

including the use of generative models and the integration of 

real and synthetic data in the modeling process. They also 

describe the expected improvements in model performance 

and system resilience and explain how this approach supports 

both scientific understanding and practical development in 

smart urban mobility. 

2. Materials and Methods 

This section outlines the methodological foundation of the 

SynTraffic project, which combines generative modelling, 

data integration, and resilience-oriented design to enhance 

the performance of urban traffic prediction and control sys-

tems. It first presents the generative approaches used to cre-

ate synthetic traffic data, including data-driven models and 

microscopic simulation tools. It then describes the frame-

work for integrating synthetic and real datasets to ensure con-

sistent, balanced, and reliable training conditions for ma-

chine learning models. Finally, it introduces the theoretical 

principles that guide the project’s focus on resilience, ex-

plaining how diverse data sources and systematic validation 

contribute to robust behaviour under both typical and stress 

conditions. 

2.1. Generative Modelling for Synthetic Data 

Generative modelling forms a central component of the 

SynTraffic project because it provides a way to create syn-

thetic traffic data that reflects the patterns found in real meas-

urements from the transport system. The project focuses on 

developing and evaluating generative models for creating 

synthetic traffic data, in particular Generative Adversarial 

Networks (GANs) [8], [9]  and Variational Autoencoders 

(VAEs) [10]. In parallel, microscopic traffic simulation tools 

are used as a separate source of scenario-based data. To-

gether, these approaches support the generation of synthetic 

images, time series, and traffic scenarios that represent a 

broad range of conditions, including situations that are diffi-

cult to capture through real-world observations. 

GANs will be developed and tested in SynTraffic to learn 

how traffic situations appear in real datasets and to generate 

new samples that follow the same structure. A GAN consists 

of two neural networks trained together. The generator pro-

duces synthetic data, while the discriminator evaluates 

whether the data looks real or artificial. Through repeated up-

dates, the generator gradually improves its ability to produce 

samples that the discriminator cannot reliably differentiate 

from the real data. This makes GANs useful for producing 

high-fidelity synthetic traffic images and time series, espe-

cially in situations where traffic patterns vary strongly with 

environmental context. The project uses established tech-

niques to improve training stability and to encourage the 

model to produce a broad variety of scenarios, including dur-

ing different times of day or under different weather condi-

tions. The resulting synthetic datasets can extend the cover-

age of the real dataset, thereby supporting the development 

of more robust prediction and detection models. 

VAEs provide a complementary approach. A VAE learns 

a latent space that captures the essential structure of real traf-

fic data, and from this space it can sample new variations. 

The model consists of an encoder, which compresses the data 

into a latent representation, and a decoder, which recon-

structs the data from this representation. This probabilistic 

framework allows the model to generate smooth variations 

of typical traffic behaviour and to provide plausible values in 

regions of the dataset where real measurements may be miss-

ing. In SynTraffic, VAEs will be used primarily for numeri-

cal data, such as traffic flows or speeds, where learning a 

structured latent space can support the generation of con-

sistent synthetic sequences and help describe how different 

traffic states relate to one another. 

Alongside data-driven generative models, SynTraffic uses 

microscopic traffic simulation tools. Simulation provides a 

controlled virtual environment in which traffic demand, 

roadway layout, weather, and incidents can be introduced 

with precision. This enables the generation of physically con-

sistent data for rare or safety-critical situations that cannot 
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easily be collected in real operations. Simulation also pro-

vides complete ground truth for all elements of the system, 

which is valuable when training or evaluating machine learn-

ing models [11]. In the project, simulation serves two pur-

poses. First, it produces synthetic datasets for underrepre-

sented scenarios. Second, it acts as a reference for checking 

whether GAN- or VAE-generated data remains consistent 

with the expected physical behaviour of the transport net-

work. 

Together, GANs, VAEs, and microscopic simulation pro-

vide a diverse toolbox for generating synthetic data. Each 

method contributes different strengths: GANs for realistic 

detail, VAEs for structured variation and stability, and simu-

lation for physical consistency. Table 1 summarises the roles 

of these approaches in the project. 

Table 1.  Approaches for Synthetic Traffic Data Generation 

Approach Strengths Challenges 

GAN e.g., to create 

realistic traffic im-

ages or time-series 

– High realism in outputs; cap-

tures complex correlations in 

data implicitly. 

– Can produce detailed, high-fi-

delity synthetic examples (e.g., 

sharp images of traffic scenes). 

– Difficult to train (adversar-

ial instability). 

– May suffer from mode col-

lapse (missing some scenario 

types). 

– Requires large training da-

taset and careful tuning to get 

broad coverage. 

VAE e.g., to model 

distribution of traf-

fic flows and gener-

ate new variations 

– Stable training with explicit 

likelihood optimization. 

– Learns an organized latent 

space of traffic patterns, ena-

bling controlled sampling and 

interpolation. 

– Good for data augmentation 

and imputing missing data with 

uncertainty. 

– Generated data can be 

blurred or less precise (ten-

dency to average outputs). 

– Lower detail for visual 

data; might miss fine nuances 

without further refinement. 

Traffic Simulation 

e.g., to simulate ac-

cidents, roadworks, 

or new infrastruc-

ture virtually 

– Ensures physical and logical 

consistency (traffic obeys rules 

of the road). 

– Can produce rare dangerous 

events safely and provide com-

plete ground truth labels. 

– Flexible scenario design (any 

“what-if” can be tested by set-

ting initial conditions in the 

sim). 

– Relies on quality of simula-

tion models (driver behav-

iour, vehicle dynamics); if 

those are imperfect, data may 

not reflect real human behav-

iour. 

– Computationally intensive 

for large networks or many 

repeated runs. 

– Needs expert input to set 

up realistic scenarios (cali-

bration to real city condi-

tions). 

 

2.2. Integrating Synthetic and Real Data in Traffic Mod-

els 

The value of synthetic data depends on how effectively it 

can be combined with real measurements for model training 

and analysis. SynTraffic therefore develops a structured 

framework for integrating synthetic and real traffic data so 

that machine learning models can treat them as a unified in-

formation source. This includes harmonizing data formats, 

balancing the contribution of different data types during 

training, and validating the integrated dataset to ensure that 

synthetic data supports rather than distorts model behaviour. 

The first step is data harmonization. All synthetic samples 

generated by GANs, VAEs, or simulation tools are trans-

formed to match the structure and feature space of the real 

dataset. If the real data contains fields such as timestamp, lo-

cation, vehicle count, and average speed, the synthetic data 

is required to follow the same schema. Units and measure-

ment scales are aligned, and multi-source data is placed on a 

common timeline. This reduces the risk that the learning al-

gorithm identifies accidental cues that distinguish synthetic 

from real data. Scenario metadata may be used during train-

ing when appropriate, either to test model sensitivity or to 

enrich the variability of training conditions. 

A central methodological consideration is avoiding bias 

when mixing synthetic and real data. If the datasets were 

simply concatenated, one type of data could dominate the 

training process. SynTraffic will therefore use controlled 

sampling and weighting strategies. For example, early train-

ing may include more synthetic samples to expose the model 

to diverse conditions, while later refinements may rely more 

heavily on real data. This reflects standard ideas from domain 

adaptation, where synthetic data is treated as a related source 

domain. After training on mixed data, a fine-tuning step on 

purely real data can correct small differences between the 

two domains. This strategy aligns with findings from related 

work in advanced driver assistance systems, where combin-

ing synthetic and real data and then fine-tuning on real ex-

amples produced the best performance [12]. 

SynTraffic also performs statistical checks to validate the 

combined dataset. Model outputs are compared across real, 

synthetic, and mixed inputs to detect whether the model re-

acts differently depending on the data source. If a model con-

sistently predicts unrealistic patterns when fed synthetic sam-

ples that should match real-world conditions, this signals a 

domain shift that must be corrected. Validation is carried out 

both on holdout sets of real data and on synthetic scenarios 

with known ground truth from simulation. Any discrepancies 

feed back into refining the generative models or adjusting the 

synthetic-to-real data ratio. 

Data quality assurance is included throughout the integra-

tion process. Real traffic data may contain noise, outliers, or 

missing values, and synthetic data can occasionally produce 

artifacts. SynTraffic applies filtering and outlier detection to 

remove or correct values that violate expected physical con-

straints, such as negative traffic counts or sensor malfunc-

tions. The goal is to produce a coherent dataset that is both 

diverse and reliable. Conceptually, this approach addresses 

the bias-variance trade-off by reducing variance through data 

cleaning and reducing bias by incorporating a wider variety 

of synthetic scenarios. 

After integration and training, the project performs resili-

ence testing of the resulting models. The models are evalu-

ated under stress conditions generated through simulation or 

synthetic data to confirm that the integration process has 

achieved the intended improvements in robustness. If perfor-

mance does not meet expectations, the integration loop is 
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repeated with revised weighting or updated generative mod-

els. This iterative testing reflects the project’s focus on robust 

optimization and resilience assessment for urban traffic sys-

tems. 

2.3. Theoretical Basis for Resilience in Traffic Systems 

A central goal of SynTraffic is to strengthen the resilience 

of urban traffic systems by improving the quality and diver-

sity of data used to train predictive and control models. In 

theory, resilience refers to the ability of a system to absorb 

disturbances, adapt to changing conditions, and recover 

quickly from disruptions. In the context of traffic networks, 

this means that during events such as accidents, extreme 

weather, or sudden increases in demand, the system should 

continue to operate at an acceptable level and restore normal 

flow without cascading failures. 

Synthetic data contributes to resilience by filling 

knowledge gaps that make traffic models fragile. Many op-

erational models perform poorly during extreme or unusual 

situations simply because they were never exposed to them 

during development. By incorporating synthetic examples of 

severe weather, infrastructure failures, or unexpected de-

mand surges into training, SynTraffic broadens the range of 

conditions that the AI system can recognize and respond to. 

This follows the same logic used in other safety-critical fields, 

where simulation is used to prepare systems for low-fre-

quency, high-impact events. The theoretical basis is ex-

panded scenario coverage: models trained with synthetic data 

effectively gain experience with a wider portion of the sys-

tem’s state space. 

A predictive model that remains reliable under stress al-

lows traffic management strategies to be implemented proac-

tively. If the model can forecast that a specific combination 

of conditions, such as a major event combined with heavy 

rain, will result in congestion within a short time frame, op-

erators can adjust signal timings, reroute vehicles, or issue 

traveller information in advance. Without this predictive ca-

pability, intervention would occur only after congestion fully 

develops, which is often too late to prevent large delays. The 

principle is straightforward: better and more diverse infor-

mation directly enhances the system’s ability to act resili-

ently. 

Resilience also involves the ability to handle situations 

that were not explicitly seen during training. No dataset can 

include all possible future scenarios, so SynTraffic empha-

sizes generalization. By exposing the models to a wide range 

of synthetic variations, the approach reduces dependence on 

narrow correlations and encourages learning of broader pat-

terns, such as the effect of weather on vehicle speeds or how 

traffic shifts when a major link becomes unavailable. This 

aligns with established theory in machine learning that add-

ing diverse samples near the edges of the input domain can 

significantly improve a model’s performance in novel or par-

tially unfamiliar contexts [13]. 

Another source of resilience in SynTraffic comes from re-

dundancy in data and modelling approaches. Because the 

project uses synthetic and real data together, along with 

multiple generative models and simulation tools, it avoids re-

liance on any single data stream or method. If one model pro-

duces unrealistic outputs for a particular scenario, others can 

provide a corrective reference. This ensemble of data sources 

creates a safety net and supports the idea of hybrid modelling, 

where physics-based and data-driven components can com-

plement each other to improve robustness in complex sys-

tems. 

Ethical and legal considerations also form part of the the-

oretical basis for resilience. Traffic data often includes sen-

sitive information, and its use is constrained by privacy reg-

ulations. Synthetic data offers a practical way to reduce de-

pendence on personal data while still enabling detailed anal-

ysis and model development. This aligns with principles of 

data protection by design. Synthetic data can also be used to 

correct imbalances in the real dataset and improve fairness. 

If certain regions or conditions are underrepresented in real 

data, additional synthetic samples can be generated to bal-

ance the distribution. The project monitors model perfor-

mance across different subsets of the dataset to detect poten-

tial biases and address them through targeted synthetic data 

generation. In this way, synthetic data supports not only tech-

nical resilience but also compliance and fairness in the mod-

elling process. 

The theoretical foundation of SynTraffic rests on expand-

ing scenario knowledge, improving generalization, incorpo-

rating redundancy, and embedding ethical safeguards. These 

elements together form a coherent strategy for building urban 

traffic models that can withstand disruptions and continue to 

operate reliably under a wide range of conditions.  

3. Study Area and Data 

This section introduces the study area selected for the Syn-

Traffic project and describes the types of real-world data that 

form the basis for the methodological development. The aim 

is to provide a clear contextual background of the urban 

transport environment and to explain how available data 

sources support research focused on traffic behaviour under 

both normal and disrupted conditions. 

3.1. Study Area: The City of Žilina 

The study area of the SynTraffic project is the city of 

Žilina, a medium-sized urban area located in northwestern 

Slovakia. Owing to its geographical position, Žilina repre-

sents an important node within both the national and regional 

transport system. Several major transport corridors intersect 

in the city, linking domestic routes with cross-border connec-

tions towards the Czech Republic and Poland. Žilina also 

functions as a key road and rail hub, which is directly re-

flected in the intensity and diversity of traffic flows within 

its territory. 

The transport system of the city is characterized by the 

simultaneous presence of multiple traffic types. Local urban 

traffic, suburban commuting, freight transport, and transit 

flows all overlap within a relatively compact road network. 
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In transport research, such an environment is typically de-

scribed as having a high level of demand heterogeneity, 

where local and supra-local traffic relations intersect and in-

teract. This structure makes the system sensitive to changes 

in traffic organization and external disturbances. 

From a spatial perspective, Žilina has a compact urban 

core connected by a system of radial access roads and collec-

tor routes linking the city center with surrounding residential 

areas and the regional road network. This configuration is 

typical for Central European cities, where historically devel-

oped urban structures must accommodate modern traffic de-

mand, including increasing regional and transit movements. 

The city’s road network includes several capacity-sensi-

tive sections and signalized intersections that act as natural 

bottlenecks. Major road corridors such as the D1 and D3 mo-

torways, which are part of the TEN-T network, pass through 

or near the city and are complemented by first-class roads 

including I/11, I/18, I/60, and I/61. Road I/18, connecting 

north and south, plays a particularly critical role, as transit 

traffic is frequently redirected through the city during motor-

way maintenance or incidents, especially in the Strečno sec-

tion. The city ring road, known as “Veľká okružná” (I/60), 

concentrates a large share of both urban and transit traffic and 

represents a structurally vulnerable element of the network. 

Traffic conditions in Žilina exhibit strong temporal and 

spatial variability. Daily traffic patterns change with com-

muting cycles, while weather conditions and extraordinary 

events such as accidents or infrastructure restrictions can rap-

idly degrade traffic performance. Long-term observations in-

dicate growing levels of individual car traffic, which, com-

bined with limited urban space, result in recurring congestion 

and increased sensitivity to disruptions. These characteristics 

create favourable conditions for studying unbalanced and dy-

namic traffic states. 

Another important factor is the ongoing evolution of the 

city’s transport system. Changes in traffic organization, in-

terventions on higher-level road infrastructure, and regula-

tory measures related to parking or access management con-

tinually reshape traffic behaviour. Such processes increase 

the need for monitoring, prediction, and evaluation of 

transport system resilience. 

3.2. Justification of the Site Selection 

The selection of Žilina as the study area for the SynTraffic 

project is based on a combination of transport characteristics, 

data availability, and continuity of research activities. From 

a traffic engineering perspective, the city offers a compact 

yet complex system in which urban, suburban, and transit 

flows naturally overlap. This allows traffic behaviour to be 

observed and analysed at multiple scales within a single ter-

ritory. 

The structural complexity of the road network, including 

major entry radials, capacity-limited sections, and signal-

controlled junctions, creates situations in which traffic con-

ditions can deteriorate quickly due to increased demand, ad-

verse weather, or partial infrastructure failures. These prop-

erties make Žilina a suitable environment for examining sys-

tem behaviour under stress and non-standard conditions. 

A key reason for choosing Žilina is the availability of long-

term, consistent real-world traffic data. Previous research 

and implementation projects have established a monitoring 

infrastructure that enables continuous data collection with 

comparable structure over time. Initiatives such as CleverNet 

and EnCLOD laid the foundation for what is often referred 

to as a Living Urban Laboratory, where traffic data is used 

not only for research but also to support decision-making at 

the city level. 

The fact that Žilina has already served as a reference area 

in traffic modelling and simulation studies further confirms 

its suitability for methodologically oriented research. Within 

SynTraffic, the city provides a realistic framework for ex-

ploring approaches based on the integration of real and syn-

thetic data in the context of an operating urban traffic system. 

3.3. Data Sources and Data Types 

The SynTraffic project is based on a heterogeneous set of 

real-world data sources that together provide a comprehen-

sive view of urban traffic behaviour. Rather than relying on 

a single data stream, the project integrates multiple data types 

capturing both traffic dynamics and external influencing fac-

tors. This multi-layered data structure forms the empirical 

foundation for subsequent analytical and modelling tasks. 

The primary data layer consists of high-frequency traffic 

sensor data collected from the existing monitoring infrastruc-

ture in the city. These data include vehicle counts, traffic in-

tensities, speed measurements, and basic flow characteristics. 

High temporal resolution is essential for capturing short-term 

fluctuations and transient phenomena typical of real traffic, 

such as sudden speed changes or gradual congestion for-

mation. 

Camera-based data represent an important complementary 

source. Video recordings and still images from selected road 

sections and intersections provide a visual representation of 

traffic conditions. This data supports the interpretation of 

sensor measurements, allows observation of interactions be-

tween road users, and helps identify non-standard situations 

that may not be fully reflected in numerical data alone. 

Environmental and microclimatic data form another essen-

tial component. These data include meteorological variables 

such as precipitation, temperature, visibility, lighting condi-

tions, and road surface state. Such factors have a well-docu-

mented influence on driver behaviour, network capacity, and 

safety, and are therefore critical for understanding variability 

in traffic performance. 

The project also uses historical traffic records collected in 

previous research and operational projects. These include 

long-term traffic counts, accident records, and information 

on infrastructure failures or maintenance activities. Histori-

cal data provide context for current observations and are par-

ticularly important for characterizing rare but impactful 

events, which cannot be reliably analysed without empirical 

reference.  
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4. Expected Theoretical Outcomes 

SynTraffic is designed as a methodological project, so the 

expected outcomes focus on theoretical advances supported 

by previous studies and early experiments. By training traffic 

models on a combined set of real and synthetic data, the pro-

ject anticipates measurable improvements in predictive accu-

racy and operational robustness across a wide range of traffic 

conditions. 

One expected outcome is improved performance in fore-

casting key traffic variables such as flow, speed, and travel 

time. Models trained with synthetic augmentation should 

achieve lower error rates than models trained only on real 

data, especially in scenarios that are rare or difficult to cap-

ture. Prior work supports this expectation. Zhu et al. [13] 

demonstrated that adding synthetic samples to real traffic 

volume data reduced forecasting error in a graph neural net-

work model, particularly during peak and off-peak transi-

tions. In SynTraffic, a deep learning model exposed to syn-

thetic incident scenarios should predict the effects of real in-

cidents more accurately than a model lacking such exposure, 

with anticipated error reductions consistent with the 10–20% 

improvements reported in related studies. 

For vision-based tasks, such as incident detection or vehi-

cle classification in camera streams, synthetic images of rare 

events are expected to enhance recognition performance. 

Dewi et al. [8] showed that generating additional images of 

rare traffic signs using a DCGAN improved a CNN’s classi-

fication accuracy. SynTraffic aims to achieve similar benefits 

for detecting anomalies in road scenes. Early tests with 

YOLO-based models already indicate fewer false negatives 

when synthetic incident scenes are included in training, sug-

gesting that exposure to a broader spectrum of examples 

helps the model recognize events that seldom appear in real 

footage. 

Resilience is another key expected outcome. The models 

developed within SynTraffic should remain stable when con-

fronted with scenarios they have not seen before, because the 

synthetic data broadens the domain of conditions the model 

has learned to interpret. In simulation-based stress tests, 

models trained with synthetic augmentation remain reliable 

under combinations of events that would typically cause 

baseline models to fail. For example, during a combined 

snowstorm and partial signal blackout, a conventional model 

might behave unpredictably, whereas a SynTraffic-trained 

model can still provide meaningful predictions by drawing 

on related synthetic examples seen during training. Similar 

patterns were observed by Jelić et al. [12] in the ADAS do-

main, where hybrid models trained with both synthetic and 

real data-maintained performance under domain shifts that 

caused real-only models to degrade. 

The project envisions improvements in system-level be-

haviour once such models are applied in traffic control con-

texts. More accurate and robust predictions are expected to 

support proactive interventions, such as early rerouting or 

adaptive signal adjustments. At this stage, these effects are 

conceptual and will be explored in future simulation-based 

studies. The expectation is that control strategies informed 

by SynTraffic-enhanced models could help reduce conges-

tion duration and limit queue formation during high-impact 

events when compared to traditional approaches. 

A further anticipated outcome is the transferability of Syn-

Traffic’s methodology. By demonstrating in Žilina that syn-

thetic data improves model accuracy and resilience, the pro-

ject contributes a generalizable framework that can be 

adapted to other cities and transport domains. This includes 

applications such as public transport modelling, active mo-

bility planning, or emergency response analysis. The frame-

work shows how synthetic data can systematically fill gaps 

in real datasets and support more robust decision-support 

tools. 

These outcomes will be substantiated through analytical 

evaluation and comparison with prior literature. Studies such 

[3], [8], [13] provide external references for expected im-

provements, while SynTraffic’s internal evaluations will 

document specific error reductions, stability measures, and 

performance across incident scenarios. Results will include 

quantitative indicators, such as forecast accuracy under stress 

conditions, and qualitative assessments of model robustness 

in novel or unexpected environments. Together, these out-

comes represent the theoretical advances expected from 

combining real and synthetic data in urban traffic modelling. 

5. Discussion 

The SynTraffic project offers several important insights 

for the field of urban mobility, particularly regarding how 

synthetic data and generative modelling can support more re-

silient traffic systems. One of the clearest contributions is 

demonstrating a practical approach to overcoming data scar-

city in complex system modelling. Traditional traffic models 

have always been limited by the range of events captured in 

historical data or by simplifying assumptions needed for an-

alytical models. SynTraffic expands this space by generating 

new, domain-consistent scenarios that enrich the learning 

process. This represents a shift in how transportation re-

searchers can think about data: the dataset is no longer a fixed 

constraint but something that can be actively shaped to sup-

port better modelling. Similar shifts have already reshaped 

domains like robotics and autonomous driving, where simu-

lation and synthetic data are routinely used to expose algo-

rithms to conditions unlikely to be observed in practice. Syn-

Traffic shows how the same principle can extend to traffic 

modelling by incorporating both empirical observations and 

hypothetical scenarios into a unified learning framework. 

The project also highlights how data-driven intelligence 

can enhance urban resilience. Historically, resilience in traf-

fic networks has depended on physical redundancy and inci-

dent response strategies. While these remain important, Syn-

Traffic demonstrates that informational resilience can offer 

comparable benefits. A city may not be able to expand its 

infrastructure, but with predictive tools that have been 

trained on a broad range of synthetic scenarios, it can operate 

the existing network more effectively and prevent gridlock in 

cases where previous systems would fail. This has broader 
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implications for planning and policy. Investments in data, an-

alytics, and predictive modelling can complement traditional 

infrastructure projects and, in some contexts, provide more 

cost-effective improvements in system reliability. The meth-

odological approach developed in SynTraffic could integrate 

naturally with emergency response planning, climate adapta-

tion strategies, and long-term mobility development by re-

vealing which parts of the network are most vulnerable under 

synthetic stress scenarios and therefore require attention. 

A distinctive feature of SynTraffic will be the coordinated 

use of generative models and traffic simulation within a sin-

gle methodological framework. While many studies rely on 

individual techniques such as GAN-based data augmentation 

or standalone simulations, SynTraffic will combine these 

tools in a structured manner. Simulation will be used to cre-

ate physically consistent traffic scenarios, while generative 

models will be explored to capture and extend patterns ob-

served in data. This combined approach is expected to sup-

port a more flexible research workflow in which data-driven 

and model-based methods complement each other. It also 

suggests that advanced ITS methodologies can be developed 

for mid-sized cities using open-source tools and focused re-

search efforts, without requiring large-scale or complex in-

frastructure. 

The discussion must also recognize limitations of the ap-

proach. Synthetic data is only as comprehensive as the as-

sumptions built into the generative models and simulations. 

There will always be events that fall outside the imagined 

scenario space. Sudden societal disruptions, such as pan-

demic lockdowns, show how quickly mobility patterns can 

deviate from established norms. SynTraffic reduces this risk 

by generating a wide variety of scenarios, but the models will 

still require continuous updates as real conditions evolve. 

Computational cost is another consideration. Training gener-

ative models and running extensive simulations require sub-

stantial resources. SynTraffic’s use of high-performance 

computing at the University of Žilina provides insight into 

these trade-offs and raises questions about scalability. Trans-

fer learning may help address this challenge by allowing 

models trained in one city to be adapted to another city with 

similar characteristics, but whether this can be done reliably 

remains an open question. 

Ethical considerations also accompany the use of synthetic 

data. While synthetic data reduces reliance on personal infor-

mation and aligns with data protection principles, it intro-

duces new responsibilities. The assumptions encoded in sim-

ulated or generated scenarios must be transparent to avoid 

embedding unintended biases. If certain neighbourhoods, be-

haviours, or conditions are underrepresented or misrepre-

sented, model performance may degrade in real-world use. 

SynTraffic addresses this by documenting scenario genera-

tion procedures and evaluating model performance across 

different spatial and temporal subsets. This helps identify 

gaps and guide the targeted generation of additional synthetic 

samples. In this way, synthetic data not only supports tech-

nical resilience but also strengthens transparency and fair-

ness in model development. 

6. Conclusion 

The SynTraffic project demonstrates how combining arti-

ficial intelligence with simulation can open new possibilities 

for traffic management. By integrating the adaptive learning 

capabilities of AI with the structured scenario generation of-

fered by simulation, and supporting both with a coordinated 

data management framework, the project shows that this hy-

brid approach is both theoretically robust and practically val-

uable. The expected improvements in prediction accuracy 

and system resilience illustrate that investing in data synthe-

sis can be as important as innovating new model architec-

tures. This challenges the long-standing assumption that bet-

ter AI systems mainly require collecting more real-world 

data. Instead, SynTraffic shows that intelligently generated 

synthetic data can expand the operational range of traffic 

models in meaningful ways. 

For practitioners and city planners, the project suggests 

what future traffic management systems may look like: tools 

that continually learn from a broad space of possible condi-

tions, simulate upcoming risks, and prepare for emerging 

challenges. As cities face growing uncertainties related to cli-

mate events, changing mobility habits, and infrastructure 

constraints, such systems can help maintain reliable and effi-

cient operations even under stress. 

The findings also reinforce an important theoretical point: 

the data used for training strongly determines what an AI sys-

tem can understand and predict. By expanding the dataset 

with realistic synthetic scenarios, SynTraffic improves 

model generalization and stability while preserving privacy 

and reducing dependence on scarce or sensitive real-world 

measurements. The project contributes to the theoretical de-

velopment of intelligent transportation systems by demon-

strating how synthetic data can be integrated into modelling 

frameworks and how it influences the behaviour of predictive 

models across a wider domain of conditions. It also provides 

a practical pipeline that other cities or research teams can 

adapt and extend. 

More generally, SynTraffic provides an example of how 

AI-driven systems can be made more resilient by using syn-

thetic data to fill in the gaps in empirical data collection. The 

methodological principles demonstrated here can extend be-

yond road traffic to other areas of smart cities where data is 

limited, expensive, or incomplete. For Žilina and similar cit-

ies, approaches like SynTraffic offer a path toward transport 

networks that operate with greater foresight, adaptability, 

and robustness. The theoretical insights and methodological 

tools developed through the project provide a foundation for 

future work and represent an important step toward building 

resilient and intelligent urban mobility systems. 

ACKNOWLEDGEMENTS 

The article is supported by the project “APVV-24-0282 - 

Synthetic Traffic Data for Improving the Resilience of 

Transport Systems”.  

 



 

8 Maroš Jakubec (et al.): Synthetic Data for Resilient Urban Traffic Systems: A Methodological Framework 

REFERENCES  

[1] European Court of Auditors. Audit preview: Urban mobility 
in the EU. Luxembourg, Apr. 2019. http://www.eca.eu-
ropa.eu/en/Pages/Report.aspx?did=49865 (accessed Dec. 10, 
2025). 

[2] A. K. Haghighat, V. Ravichandra-Mouli, P. Chakraborty, Y. 
Esfandiari, S. Arabi, and A. Sharma, ‘Applications of Deep 
Learning in Intelligent Transportation Systems’, J. Big Data 
Anal. Transp., vol. 2, no. 2, pp. 115–145, Aug. 2020, doi: 
10.1007/s42421-020-00020-1. 

[3] P. Liu, Y. Chen, F. Yu, and Q. Zhang, ‘Mastering adverse 
weather: a two-stage approach for robust semantic segmenta-
tion in autonomous driving’, Vis. Comput., Oct. 2024, doi: 
10.1007/s00371-024-03663-1. 

[4] J. Lee, D. Shiotsuka, T. Nishimori, K. Nakao, and S. Kamijo, 
‘GAN-Based LiDAR Translation between Sunny and Ad-
verse Weather for Autonomous Driving and Driving Simula-
tion’, Sensors, vol. 22, no. 14, Art. no. 14, Jan. 2022, doi: 
10.3390/s22145287. 

[5] E. Abdessater et al., ‘A Novel Method for ECG-Free Heart 
Sound Segmentation in Patients with Severe Aortic Valve 
Disease’, Sensors, vol. 25, no. 11, Art. no. 11, Jan. 2025, doi: 
10.3390/s25113360. 

[6] S. I. Nikolenko, ‘Synthetic Data for Deep Learning’, Sep. 25, 
2019, arXiv: arXiv:1909.11512. doi: 
10.48550/arXiv.1909.11512. 

[7] European Data Protection Supervisor. TechSonar: Synthetic 
Data. Brussels, 2022. https://www.edps.europa.eu/press-pub-
lications/publications/techsonar/synthetic-data_en (accessed 
Dec. 10, 2025). 

[8] C. Dewi, R.-C. Chen, Y.-T. Liu, and S.-K. Tai, ‘Synthetic 
Data generation using DCGAN for improved traffic sign 
recognition’, Neural Comput. Appl., vol. 34, no. 24, pp. 
21465–21480, Dec. 2022, doi: 10.1007/s00521-021-05982-z. 

[9] D. Tamayo-Urgilés et al., ‘GAN-Based Generation of Syn-
thetic Data for Vehicle Driving Events’, Appl. Sci., vol. 14, 
no. 20, Oct. 2024, doi: 10.3390/app14209269. 

[10] D. P. Kingma and M. Welling, ‘An Introduction to Variational 
Autoencoders’, Found. Trends® Mach. Learn., vol. 12, no. 4, 
pp. 307–392, Nov. 2019, doi: 10.1561/2200000056. 

[11] P. A. Lopez et al., ‘Microscopic Traffic Simulation using 
SUMO’, in 2018 21st International Conference on Intelligent 
Transportation Systems (ITSC), Maui, HI: IEEE, Nov. 2018, 
pp. 2575–2582. doi: 10.1109/ITSC.2018.8569938. 

[12] B. Jelić, R. Grbić, M. Vranješ, and D. Mijić, ‘Can We Replace 
Real-World With Synthetic Data in Deep Learning-Based 
ADAS Algorithm Development?’, IEEE Consum. Electron. 
Mag., vol. 12, no. 5, pp. 32–38, Sep. 2023, doi: 
10.1109/MCE.2021.3083206. 

[13] K. Zhu, S. Zhang, J. Li, D. Zhou, H. Dai, and Z. Hu, ‘Spatio-
temporal multi-graph convolutional networks with synthetic 
data for traffic volume forecasting’, Expert Syst. Appl., vol. 
187, p. 115992, Jan. 2022, doi: 10.1016/j.eswa.2021.115992. 

 


