Transport And Communications 2024, 12(1):1-12 | DOI: 10.26552/tac.C.2024.1.1

Simulation and Modeling Programs for Electric and Hybrid Vehicles: A Review and Case Study of AVL Cruise for Energy Consumption Analysis

Emilia M. Szumska1, Adriana Skuza1
1 Department of Transport and Automotive Engineering, Kielce University of Technology, Kielce, 25-314, Poland

Continuous advancements in alternative drive technologies for vehicles necessitate the development of sophisticated computational tools. Due to the inherent complexity of these systems, prototyping can be a time-consuming and expensive endeavour. Fortunately, computer-aided modelling and simulation environments offer a viable alternative by enabling the virtual testing of novel drivetrain solutions without the need for physical prototypes. These environments leverage existing solutions and readily available models of vehicles, drives, and their components, fostering the efficient development of new concepts and optimized drivetrain models. This paper presents a curated overview of select vehicle modelling and simulation programs, followed by the introduction of an electric vehicle model developed within the AVL Cruise software.

Keywords: electric vehicle, modelling, simulation, energy efficiency, AVL Cruise
JEL classification: L62

Received: March 19, 2024; Revised: March 19, 2024; Accepted: April 27, 2024; Prepublished online: April 27, 2024; Published: April 28, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Szumska, E.M., & Skuza, A. (2024). Simulation and Modeling Programs for Electric and Hybrid Vehicles: A Review and Case Study of AVL Cruise for Energy Consumption Analysis. Transport And Communications12(1), 1-12. doi: 10.26552/tac.C.2024.1.1
Download citation

References

  1. Guzek, M., Jackowski, J., Jurecki, R.S., Szumska, E.M., Zdanowicz, P. ¯muda, M. 2024. Electric Vehicles-An Overview of Current Issues-Part 1-Environmental Impact, Source of Energy, Recycling, and Second Life of Battery. Energies, 17(1), p.249. https://doi.org/10.3390/en17010249. Go to original source...
  2. Guzek, M., Jackowski, J., Jurecki, R.S., Szumska, E.M., Zdanowicz, P. ¯muda, M. 2024. Electric Vehicles-An Overview of Current Issues-Part 2-Infrastructure and Road Safety. Energies, 17(2), pp.495-495. https://doi.org/10.3390/en17020495. Go to original source...
  3. Skuza, A., Jurecki, R., Szumska, E. 2023. Analysis of the operating parameters of electric, hybrid, and conventional vehicles on different types of roads. Open Engineering, 13(1). https://doi.org/10.1515/eng-2022-0443. Go to original source...
  4. ©arkan, B., Gnap, J., Kiktová, M. 2019. The importance of hybrid vehicles in urban traffic in terms of environmental impact. Archiwum Motoryzacji, 85(3). https://doi.org/10.14669/AM.VOL85.ART8. Go to original source...
  5. Fetene, G.M., Kaplan, S., Mabit, S.L., Jensen, A.F., Prato, C.G. 2017. Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transportation Research Part D: Transport and Environ-ment, 54, pp.1-11. https://doi.org/10.1016/j.trd.2017.04.013. Go to original source...
  6. Santos, A., Maia, P., Jacob, R., Wei, H., Callegari, C., Caro-lina, A., Schaeffer, R., Szklo, A. 2024. Road conditions and driving patterns on fuel usage: Lessons from an emerging economy. Energy, 295, pp.130979-130979. https://doi.org/10.1016/j.energy.2024.130979. Go to original source...
  7. Skuza, A., Jurecki, R., Szumska, E. 2023b. Influence of Traffic Conditions on the Energy Consumption of an Electric Vehicle. Communications - Scientific letters of the University of Zilina, 25(1), pp.B22-B33. https://doi.org/10.26552/com.c.2023.004. Go to original source...
  8. Peèman, J., ©arkan, B., Li¾betinová, L., ¥upták, V., Loman, M., Bartu¹ka, L. 2024. Impact of Acceleration Style on Vehicle Emissions and Perspectives for Improvement through Transportation Engineering Solutions. Archiwum Motoryzacji/ The Archives of Automotive Engineering, 104(2), pp.48-62. https://doi.org/10.14669/am/189665. Go to original source...
  9. Won, H.W. 2021. Development of a Hybrid Electric Vehicle Simulation Tool with a Rule-Based Topology. Applied Sciences, 11(23), p.11319. https://doi.org/10.3390/app112311319. Go to original source...
  10. Pielecha, I., Pielecha, J. 2019. Simulation analysis of electric vehicles energy consumption in driving tests. Eksploatacja i Niezawodnosc - Maintenance and Relia-bility, 22(1), pp.130-137. https://doi.org/10.17531/ein.2020.1.15. Go to original source...
  11. Mamala, J., Graba, M., Bieniek, A., Pra¿nowski, K., Augu-stynowicz, A., ¦mieja, M. 2021. Study of energy con-sumption of a hybrid vehicle in real-world conditions. Eksploatacja i Niezawodnosc - Maintenance and Relia-bility, 23(4), pp.636-645. https://doi.org/10.17531/ein.2021.4.6. Go to original source...
  12. Gao, D.W., Mi, C., Emadi, A. 2007. Modeling and Simu-lation of Electric and Hybrid Vehicles. Proceedings of the IEEE, 95(4), pp.729-745. https://doi.org/10.1109/jproc.2006.890127. Go to original source...
  13. Cao, Y., Yao, M., Sun, X. 2023. An Overview of Model-ling and Energy Management Strategies for Hybrid Elec-tric Vehicles. Applied sciences, 13(10), pp.5947-5947. https://doi.org/10.3390/app13105947. Go to original source...
  14. Mohammadi, F., Nazri, G.-A., Saif, M. 2019. Modeling, Simulation, and Analysis of Hybrid Electric Vehicle Using MATLAB/Simulink. 2019 International Confer-ence on Power Generation Systems and Renewable Ener-gy Technologies (PGSRET), 26-27 August 2019, Istanbul, Turkey, pp.1-5. https://doi.org/10.1109/PGSRET.2019.8882686. Go to original source...
  15. Enang, W., Bannister, C. 2017. Modelling and control of hybrid electric vehicles (A comprehensive review). Re-newable and Sustainable Energy Reviews, 74, pp.1210-1239. https://doi.org/10.1016/j.rser.2017.01.075. Go to original source...
  16. Hanifah, R.A., Toha, S.F., Ahmad, S. 2015. Electric Vehi-cle Battery Modelling and Performance Comparison in Relation to Range Anxiety. Procedia Computer Science, 76, pp.250-256. https://doi.org/10.1016/j.procs.2015.12.350. Go to original source...
  17. Rotas, R., Iliadis, P., Nikolopoulos, N., Rakopoulos, D., Tomboulides, A. 2024. Dynamic Battery Modeling for Electric Vehicle Applications. Batteries, 10(6), p.188. https://doi.org/10.3390/batteries10060188. Go to original source...
  18. Caban, J., Señko, J., Nowak, R., Rumianek, P., Podkowski, K., Wolska, N. 2023. Development of the Construction of City Buses in Terms of Reducing the Curb Weight of the Vehicle. Archiwum Motoryzacji/ The Archives of Auto-motive Engineering, 102(4), pp.91-104. https://doi.org/10.14669/am/176907. Go to original source...
  19. Kaushik, S. 2019. Modeling and Simulation of Electric Vehicle to Optimize its Cost and Range. International Journal of Engineering and Advanced Technology, 8(6), pp.415-419. https://doi.org/10.35940/ijeat.e7819.088619. Go to original source...
  20. Vairavel, M., Girimurugan, R., Shilaja, C., Loganathan, G.B., Kumaresan, J. 2022. Modeling, validation and sim-ulation of electric vehicles using MATLAB. Nucleation and Atmospheric Aerosols. 2452, 030006. https://doi.org/10.1063/5.0114084. Go to original source...
  21. Syed, F.U., Kuang, M.L., Czubay, J., Ying, H. 2006. Deri-vation and Experimental Validation of a Power-Split Hybrid Electric Vehicle Model. IEEE Transactions on Vehicular Technology, 55(6), pp.1731-1747. https://doi.org/10.1109/tvt.2006.878563. Go to original source...
  22. Mapelli, F.L., Tarsitano, D., Mauri, M. 2010. Plug-In Hy-brid Electric Vehicle: Modeling, Prototype Realization, and Inverter Losses Reduction Analysis. IEEE Transac-tions on Industrial Electronics, 57(2), pp.598-607. https://doi.org/10.1109/tie.2009.2029520. Go to original source...
  23. Wan, P., Liu, B., Li, B., Liu, F., Zhang, J., Fan, W., Tang, J. 2023. Engine modelling architecture study for hybrid electric vehicle diagnosis application. Energy, 282, pp.128408-128408. https://doi.org/10.1016/j.energy.2023.128408. Go to original source...
  24. Mineeshma , G.R., Chacko, R.V., Amal , S., Sreedevi , M.L., Vishnu , V. 2016. Component Sizing of Electric Vehicle / Hybrid Electric Vehicle subsystems using Backward modelling approach. 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 14-17 December 2016, Trivandrum, India. https://doi.org/10.1109/pedes.2016.7914227. Go to original source...
  25. Zhou, Q., Du, C. 2021. A quantitative analysis of model predictive control as energy management strategy for hy-brid electric vehicles: A review. Energy Reports, 7, pp.6733-6755. https://doi.org/10.1016/j.egyr.2021.09.119. Go to original source...
  26. Bapodra, Y., Rajamanickam, U. 2021. A review on Hybrid Electric Vehicle and simulation on Hybrid Electric Ve-hicle Drivetrain. IOP Conference Series: Earth and Envi-ronmental Science, 633, p.012007. https://doi.org/10.1088/1755-1315/633/1/012007. Go to original source...
  27. Wang, X., He, H., Sun, F., Zhang, J. 2015. Application Study on the Dynamic Programming Algorithm for Ener-gy Management of Plug-in Hybrid Electric Vehicles. En-ergies, 8(4), pp.3225-3244. https://doi.org/10.3390/en8043225. Go to original source...
  28. Mohd, T.A.T., Hassan, M.K., A. Aziz, WMK. 2015. Mathematical modeling and simulation of an electric ve-hicle. Journal of Mechanical Engineering and Sciences, 8, pp.1312-1321. https://doi.org/10.15282/jmes.8.2015.6.0128. Go to original source...
  29. Rozhdestvensky, D., Fulem, J. 2017. Simulation of elec-tric and hybrid vehicles in a vehicle simulator based on a detailed physical model, for the purpose of HMI evalua-tion. Acta Polytechnica CTU Proceedings, 12, p.94. https://doi.org/10.14311/app.2017.12.0094. Go to original source...
  30. Luigi, F., Tarsitano, D. 2012. Modeling of Full Electric and Hybrid Electric Vehicles. In: New Generation of Electric Vehicles. London: IntechOpen. https://doi.org/10.5772/53570. Go to original source...
  31. Onoda, S., Emadi, A. 2004. PSIM-Based Modeling of Automotive Power Systems: Conventional, Electric, and Hybrid Electric Vehicles. IEEE Transactions on Vehicu-lar Technology, 53(2), pp.390-400. https://doi.org/10.1109/tvt.2004.823500. Go to original source...
  32. Van Mierlo, J., Maggetto, G. 2004. Innovative Iteration Algorithm for a Vehicle Simulation Program. IEEE Transactions on Vehicular Technology, 53(2), pp.401-412. https://doi.org/10.1109/tvt.2004.823534. Go to original source...
  33. Heath, R.P.G., Mo, C.Y. 1996. A Modular Approach to Powertrain Modelling for the Prediction of Vehicle Per-formance, Economy and Emissions. SAE technical papers on CD-ROM/SAE technical paper series. https://doi.org/10.4271/960427. Go to original source...
  34. Katrasnik, T., Trenc, F., Opresnik, S.R. 2007. Analysis of Energy Conversion Efficiency in Parallel and Series Hy-brid Powertrains. IEEE Transactions on Vehicular Tech-nology, 56(6), pp.3649-3659. https://doi.org/10.1109/tvt.2007.901033. Go to original source...
  35. Wang, X., He, H., Sun, F., Sun, X., Tang, H. 2013. Compar-ative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles. Energies, 6(11), pp.5656-5675. https://doi.org/10.3390/en6115656. Go to original source...
  36. Mohan, G., Assadian, F., Longo, S. 2013. Comparative analysis of forward-facing models vs backwardfacing models in powertrain component sizing. IET Hybrid and Electric Vehicles Conference 2013 (HEVC 2013), 06-07 November 2013, London, UK., pp.1-6. https://doi.org/10.1049/cp.2013.1920. Go to original source...
  37. Gao, W., Neema, S., Gray, J., Picone, J., Porandla, S., Musunuri, S. Mathews, J. 2005. Hybrid Powertrain De-sign Using a Domain-Specific Modeling Environment. 2005 IEEE Vehicle Power and Propulsion Conference , 07-09 September 2005, Chicago, USA. https://doi.org/10.1109/vppc.2005.1554524. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.