Transport And Communications 2025, 13(2):1-8 | DOI: 10.26552/tac.C.2025.2.1

Synthetic Data for Resilient Urban Traffic Systems: A Methodological Framework

Maroš Jakubec1, Radovan Madleňák2, Michal Palčák1, Pavol Kudela1, Eva Jakubcová1, Daniel Gachulinec2, Viktória Cvacho2
1 University Science Park UNIZA, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
2 Faculty of Operation and Economics of Transport and Communications, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Urban traffic models often struggle with rare and disruptive events because real-world data for such situations are limited. This article presents the SynTraffic project, which explores the use of synthetic traffic data to support more robust and resilient traffic modelling. The proposed approach combines real-world observations with artificially created traffic scenarios to expand the range of conditions available for model development. The methodology is demonstrated using the city of Žilina as a representative urban case with complex traffic patterns and long-term monitoring infrastructure. The article focuses on the theoretical background, methodological design, and expected benefits of synthetic data in intelligent transportation systems, highlighting its potential to address data scarcity, support privacy-aware analysis, and improve the handling of unusual traffic conditions.

Keywords: synthetic traffic data, urban traffic modelling, intelligent transportation systems, traffic resilience
JEL classification: L91, R41

Received: December 18, 2025; Revised: December 19, 2025; Accepted: December 21, 2025; Prepublished online: December 31, 2026; Published: December 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jakubec, M., Madleňák, R., Palčák, M., Kudela, P., Jakubcová, E., Gachulinec, D., & Cvacho, V. (2025). Synthetic Data for Resilient Urban Traffic Systems: A Methodological Framework. Transport And Communications13(2), 1-8. doi: 10.26552/tac.C.2025.2.1
Download citation

References

  1. European Court of Auditors. Audit preview: Urban mobility in the EU. Luxembourg, Apr. 2019. http://www.eca.europa.eu/en/Pages/Report.aspx?did=49865 (accessed Dec. 10, 2025).
  2. A. K. Haghighat, V. Ravichandra-Mouli, P. Chakraborty, Y. Esfandiari, S. Arabi, and A. Sharma, 'Applications of Deep Learning in Intelligent Transportation Systems', J. Big Data Anal. Transp., vol. 2, no. 2, pp. 115-145, Aug. 2020, doi: 10.1007/s42421-020-00020-1. Go to original source...
  3. P. Liu, Y. Chen, F. Yu, and Q. Zhang, 'Mastering adverse weather: a two-stage approach for robust semantic segmenta-tion in autonomous driving', Vis. Comput., Oct. 2024, doi: 10.1007/s00371-024-03663-1. Go to original source...
  4. J. Lee, D. Shiotsuka, T. Nishimori, K. Nakao, and S. Kamijo, 'GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation', Sensors, vol. 22, no. 14, Art. no. 14, Jan. 2022, doi: 10.3390/s22145287. Go to original source...
  5. E. Abdessater et al., 'A Novel Method for ECG-Free Heart Sound Segmentation in Patients with Severe Aortic Valve Disease', Sensors, vol. 25, no. 11, Art. no. 11, Jan. 2025, doi: 10.3390/s25113360. Go to original source...
  6. S. I. Nikolenko, 'Synthetic Data for Deep Learning', Sep. 25, 2019, arXiv: arXiv:1909.11512. doi: 10.48550/arXiv.1909.11512. Go to original source...
  7. European Data Protection Supervisor. TechSonar: Synthetic Data. Brussels, 2022. https://www.edps.europa.eu/press-publications/publications/techsonar/synthetic-data_en (accessed Dec. 10, 2025).
  8. C. Dewi, R.-C. Chen, Y.-T. Liu, and S.-K. Tai, 'Synthetic Data generation using DCGAN for improved traffic sign recogni-tion', Neural Comput. Appl., vol. 34, no. 24, pp. 21465-21480, Dec. 2022, doi: 10.1007/s00521-021-05982-z. Go to original source...
  9. D. Tamayo-Urgilés et al., 'GAN-Based Generation of Syn-thetic Data for Vehicle Driving Events', Appl. Sci., vol. 14, no. 20, Oct. 2024, doi: 10.3390/app14209269. Go to original source...
  10. D. P. Kingma and M. Welling, 'An Introduction to Variational Autoencoders', Found. Trends® Mach. Learn., vol. 12, no. 4, pp. 307-392, Nov. 2019, doi: 10.1561/2200000056. Go to original source...
  11. P. A. Lopez et al., 'Microscopic Traffic Simulation using SUMO', in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI: IEEE, Nov. 2018, pp. 2575-2582. doi: 10.1109/ITSC.2018.8569938. Go to original source...
  12. B. Jelić, R. Grbić, M. Vranješ, and D. Mijić, 'Can We Replace Real-World With Synthetic Data in Deep Learning-Based ADAS Algorithm Development?', IEEE Consum. Electron. Mag., vol. 12, no. 5, pp. 32-38, Sep. 2023, doi: 10.1109/MCE.2021.3083206. Go to original source...
  13. K. Zhu, S. Zhang, J. Li, D. Zhou, H. Dai, and Z. Hu, 'Spatio-temporal multi-graph convolutional networks with synthetic data for traffic volume forecasting', Expert Syst. Appl., vol. 187, p. 115992, Jan. 2022, doi: 10.1016/j.eswa.2021.115992. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.